Distribution Shifts And How We Can Learn from Them

Sean Kulinski

Probabilistic and Understandable Machine Learning Lab - Purdue University -

View of the Next Hour:

- Part 1: Background on distribution shifts
 - What is distribution shift?
 - Why are distribution shifts (currently) problematic?
- Part 2: Detecting and understanding distribution shifts
 - So what are we doing about distribution shifts?

• Looking forward, can we utilize distribution shifts to help us learn better?

About me :)

- Ph.D. Student in Computer Engineering @ Purdue University
- Belong to the Probabilistic and Understandable
 Machine Learning Lab lead by <u>Dr. David Inouye</u>
- Outside of research, I enjoy:

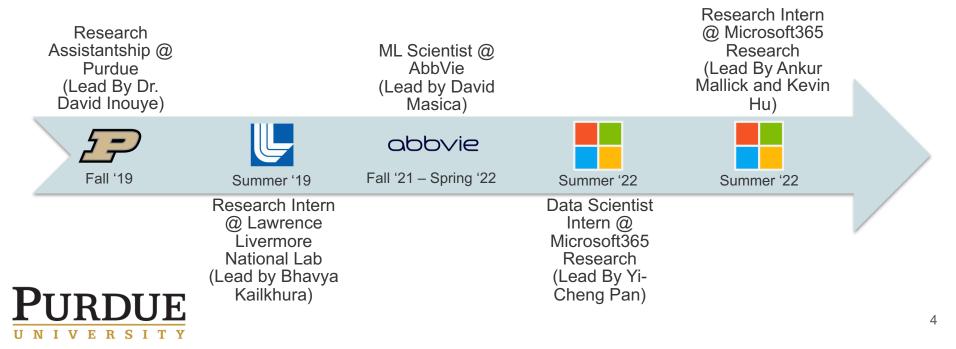
 - à mountain biking
 - \circ \P spending time with friends and family
 - \circ % figuring out how things work

My partner and our dog

My research path:

• My main research interest is:

"How can we build generalizable Machine Learning models for deployment to dynamic environments seen in the wild?"



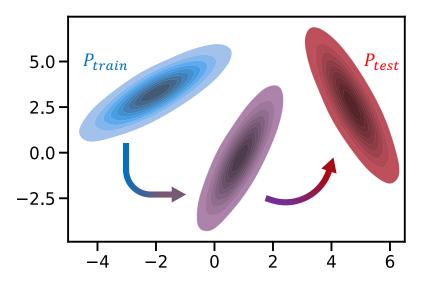
Part 1: What are Distribution Shifts?

How the real world breaks fundamental ML assumptions.

A distribution shift is when a data distribution changes from what is expected

 In machine learning, a distribution shift is when a testing distribution no longer matches the training distribution

 $P_{test}(x) \neq P_{train}(x)$



Most ML assumes train/test data distributions match

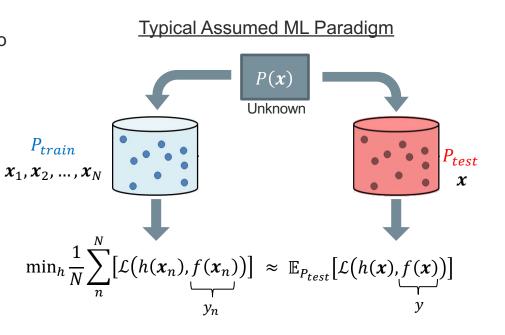
- Fundamental to most ML is the
 - *i.i.d.* assumption:
 - 1. <u>Independent: All samples x are unrelated to each other</u>

 $P(\boldsymbol{x}_i \mid \boldsymbol{x}_{i'}) = P(\boldsymbol{x}_i) \ \forall i \neq i'$

2. <u>I</u>dentically <u>D</u>istributed: All samples *x* come from the same distribution

 $P_{train}(x) = P_{test}(x)$

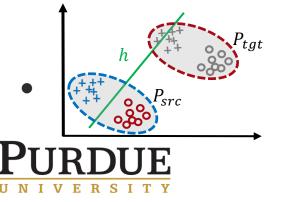
 The i.i.d. assumption allows our ML model h to generalize to P_{test}

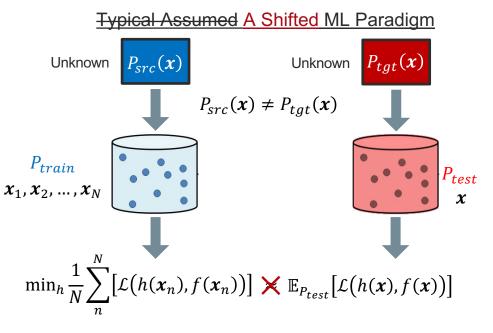


Distribution shift violates this core assumption in ML

- Distribution shift usually breaks the identically distributed assumption
- Under distribution shift, the patterns learned by *h* might not

hold under $P_{tgt}(x)$





Distribution shifts are classically broken down to three types

• In a supervised regime, we can write the joint distribution of data and labels as:

$$P(\mathbf{x}, y) = P(\mathbf{x}|y)P(y) \quad \text{-or-} \quad P(\mathbf{x}, y) = P(y|\mathbf{x})P(\mathbf{x})$$

• Covariate Shift: $P_{test}(y|x) = P_{train}(y|x)$, but $P_{test}(x) \neq P_{train}(x)$

• Ex: $P_{test}(x)$ has more people over 60, but the per-person probability of polio has not changed

• Label Shift: $P_{test}(x|y) = P_{train}(x|y)$, but $P_{test}(y) \neq P_{train}(y)$

• Ex: Everyone in *P_{test}* has been vaccinated. So, similar people still get polio, but it is less frequent

• Concept Drift: $P_{test}(y) = P_{train}(y)$, but $P_{test}(x|y) \neq P_{train}(x|y)$

• Ex: Polio has mutated in P_{tgt} to affect younger instead of older people, but the *total* risk is the same **PURDUE**

Distribution shifts are ubiquitous

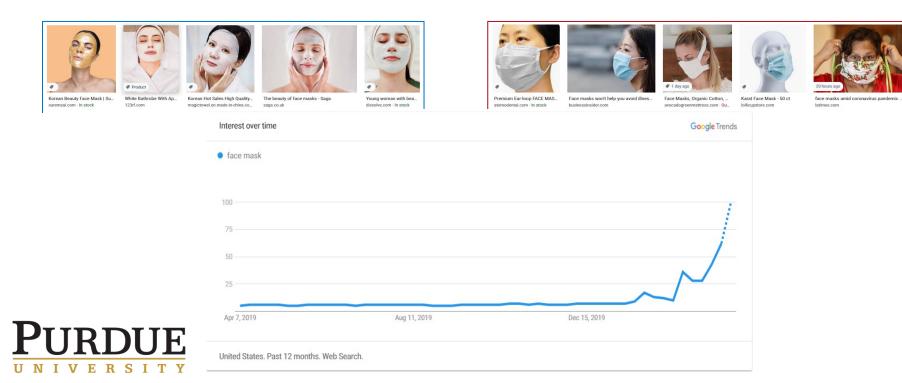
- Any changes in a current data generating environment can cause shifts
- Applying a model to a new domain is almost always a shift

Dataset	iWildCam	Camelyon17	RxRx1	FMoW	PovertyMap	GlobalWheat	OGB-MolPCBA	CivilComments	Amazon	Py150
Input (x)	camera trap photo	o tissue slide	cell image	satellite image	satellite image	wheat image	molecular graph	online comment	product review	code
Prediction (y)	animal species	tumor	perturbed gene	land use	asset wealth v	wheat head bbo	x bioassays	toxicity	sentiment	autocomplete
Domain (d)	camera	hospital	batch	time, region	country, ru/ur	location, time	scaffold	demographic	user	git repo
Source exampl	e							What do Black and LGBT people have to do with bicycle licensing?	Overall a solid package that has a good quality of construction for the price.	<pre>import numpy as np norm=np</pre>
Target example								As a Christian, I will not be patronizing any of those businesses.	I *loved* my French press, it's so perfect and carne with all this fun stuff!	<pre>import subprocess as sp p=sp.Popen() stdout=p</pre>

Exemplar Real-World Distribution Shift datasets from Stanford WILDS datasets overview [1]

Example: Google Search Results

Face mask vs. Face mask?



Part 2: Living With Distribution Shifts

Detecting the problem and trying to answer what happened?

Detecting distribution shifts – common methods

- Distribution Shift detection answer the binary question: "Has a shift occurred?"
- Detecting distribution shift is a well-studied topic [3], most methods involve either:
 - 1. Statistical Hypothesis testing between P_{src} and P_{tgt} : $\phi(\hat{P}_{src}, \hat{P}_{tgt}) \ge \epsilon$, $\phi \coloneqq$ statistical divergence function (e.g., KL-divergence) and $\hat{P} \coloneqq$ a density model of the data (e.g., a normalizing flow)
 - 2. Training a domain classifier model f to classify between x_{src} and \hat{x}_{tgt} : $\mathbb{E}_{\boldsymbol{x} \sim P_{tgt}}[f(\boldsymbol{x})] \ge \epsilon$, $\hat{x}_{tgt} \coloneqq$ an *estimate* of what samples from P_{tgt} will look like

We can use feature shift detection to localize the problem to specific features

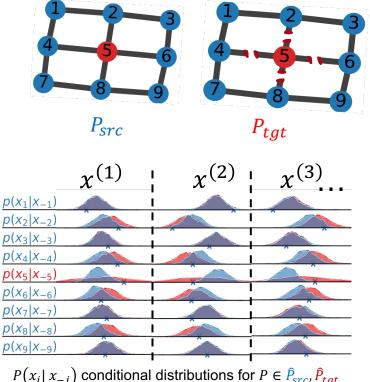
• To detect feature shift [4], we define a <u>conditional</u> <u>distribution hypothesis test:</u>

 $\circ H_0: \forall \mathbf{x}_{-j} \in \mathcal{X}_{-j}, \ \hat{P}_{src}(\mathbf{x}_j | \mathbf{x}_{-j}) = \hat{P}_{tgt}(\mathbf{x}_j | \mathbf{x}_{-j})$

 $\circ H_A: \exists \mathbf{x}_{-j} \in \mathcal{X}_{-j}, \ \hat{P}_{src}(\mathbf{x}_j | \mathbf{x}_{-j}) \neq \hat{P}_{tgt}(\mathbf{x}_j | \mathbf{x}_{-j})$

- Feature shift can happen in two stages:
 - <u>Detection</u>: Do the conditional distributions of \hat{P}_{tgt} differ from the conditional distribution \hat{P}_{src} ?
 - <u>Localization</u>: Which feature(s) have caused this difference?

Feature Shift Toy Problem



Feature Shift Detection is fast with Fisher divergence

• Fisher divergence test statistic based on the score function, $\psi \coloneqq \nabla_x \log(p(x))$

$$\phi_{Fisher}(p,q) \triangleq \mathbb{E}_{p(\boldsymbol{x})+q(\boldsymbol{x})}[\|\psi(\boldsymbol{x};p) - \psi(\boldsymbol{x};q)\|^2] = \mathbb{E}_{p(\boldsymbol{x})+q(\boldsymbol{x})}\left[\left\|\nabla_{\boldsymbol{x}}\log\frac{p(\boldsymbol{x})}{q(\boldsymbol{x})}\right\|^2\right]$$

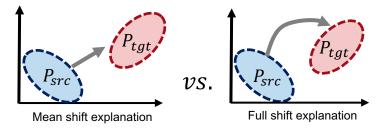
• Can compute multiple feature test statistics <u>simultaneously</u>

$$\circ \phi_{Fisher}\left(p_{x_j|x_{-j}}, q_{x_j|x_{-j}}\right) = \mathbb{E}_{p(\boldsymbol{x})+q(\boldsymbol{x})}\left[\left(\psi(\boldsymbol{x}; p) - \psi(\boldsymbol{x}; q)\right)^2\right]_j$$

- Only a **single forward and backward pass** is needed to compute all conditional score functions, which is already done when updating a density model, \hat{P}
- Feature Shift tells us: "Has a shift occurred?" + "What set of features shifted?"

A distribution shift has been detected...now what? We need to know more to respond effectively

- Problem: Once a shift has been detected, an operator needs to figure out what has changed in order to effectively respond
- Current simple approach: See how the means have shifted, $\mu_{src} \mu_{tgt}$
 - Gives a rough approximation of shift
 - However, this can miss important information:

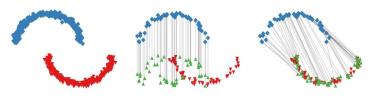


Our goal: Aid the operator by explaining how P_{src} shifted to P_{tgt}

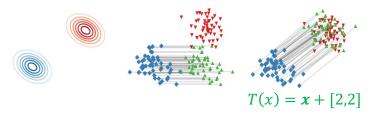
Distribution shifts can be explained by hypothesizing

how to map P_{src} to P_{tgt}

- Given two distributions P_{src} , P_{tgt} :
 - a transport map $T(\cdot)$, is a function which moves a point from P_{src} to P_{tgt} , such that $T_{\#P_{tgt}} \approx P_{src}$



• If *T* is interpretable, it can explain how P_{src} shifted to P_{tgt}



We can leverage prior Optimal Transport work to find **good** interpretable mappings

- Optimal Transport finds a minimum cost mapping T_c that aligns two distributions [10]
- By relaxing alignment and restricting our possible mappings to be interpretable we get *intrinsically interpretable transport* T_{IIT} :

 $T_{IIT} \coloneqq \operatorname{argmin}_{T \in \Omega_{int}} \mathbb{E}_{P_{train}} \left[c(\boldsymbol{x}, T(\boldsymbol{x})) \right] + \lambda \phi(P_{T(X)}, P_{test})$

where $\Omega_{int} = \{T: s.t.T \text{ is interpretable}\}, c(\cdot, \cdot)$ is a cost function (e.g., ℓ_2), and ϕ is a divergence

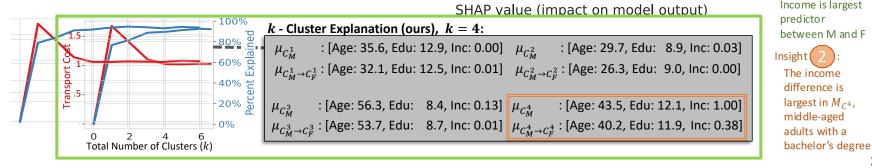
- T_{IIT} gives us a mapping which is faithful $(P_{T(X)} \approx P_{test})$, interpretable $(T \in \Omega_{int})$, and simple (minimizes a transport cost)
- Ω_{int} can be defined based on context, or one can use our pre-defined sparsefeature mappings or cluster-based mappings [5]

T_{IIT} can be used to gain actionable insights from explanations of complex shifts

• Using our *k*-cluster mappings $\Omega_{cluster}^k$, we can see how heterogenous groups (clusters) moved differently under a distribution shift

 $\Omega_{cluster}^{k} = \{T: T(\mathbf{x}) = \mathbf{x} + [\Delta]_{c}\}, \text{ where } \Delta \in \mathbb{R}^{dxk}, c = [k]$

• We can use $\Omega_{cluster}^{k}$ to compare male and female responses to the education-num for a second seco



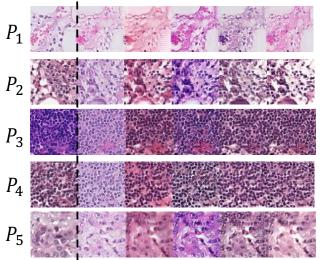
Transport Maps can also explain distribution shifts in high-dimensional regimes (images)

 When raw features are not semantically meaningful, but samples are (e.g., images), we can use posthoc methods to understand *T* such as:

Distributional-Counterfactuals := $\{x, T(x): x \sim P_{src}, T(x) \sim P_{tgt}\}$

 We can use distributional-counterfactuals to explain how H&E staining of tissue samples change across multiple hospitals [6]

Original Counterfactual Examples (ours) $P_d \mid P_{d \to 1} P_{d \to 2} P_{d \to 3} P_{d \to 4} P_{d \to 5}$



Using StarGAN [7] to show the difference between tissue samples across 5 hospitals

Take-Aways on Distribution Shifts

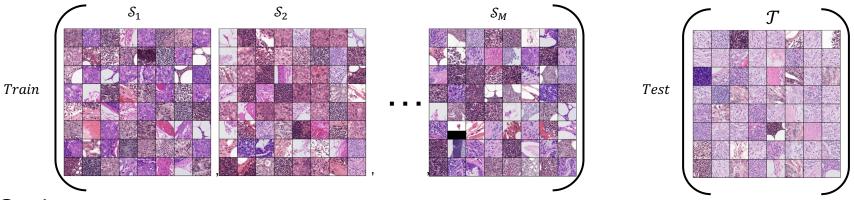
- Distribution Shifts are ubiquitous, complex, and problematic for ML
- To combat distribution shifts we need to:
 - 1. Detect a shift has happened
 - Perform statistical hypothesis testing between \hat{P}_{src} and \hat{P}_{tgt} e.g., check for feature-shift
 - 2. Understand what the distribution shift has changed
 - Solve for a distribution shift explanation *T* and see if the changes are problematic
 - 3. React to the fix the shift
 - Possibly retrain models, fix the change in our environment, update training set, etc.

Part 3: How to Avoid Problems with Distribution Shifts

Turning the problem into the solution – methods for domain generalization.

We can use sets of shifted distributions to build robust models

Given: *M* training domains $S = \{S_i | i = 1, ..., M\}$ where $S_i = \{(x_j^i, y_j^i, i)\}_{j=1}^{n_i}$



Goal:

• Find a model which can achieve a minimum error on an unseen test domain,

 $\mathcal{T} = \left\{ x_j, y_j \right\}_{j=1}^{n_t}$

• $\min_{h} \mathbb{E}_{(x,y) \in \mathcal{S}_{test}} [\ell(h(x), y)]$ for some loss function $\ell(\cdot)$ and $P_{XY}^{test} \neq P_{XI}^{i}$ **PURDUE**

Images edited from [7].

Taxonomy of DG

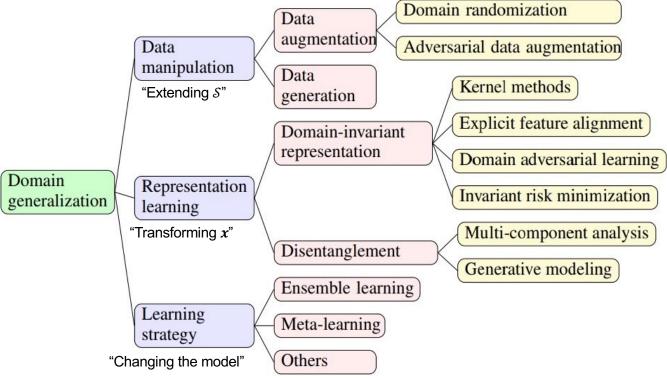


Image from [8].

An optimal representation which is invariant across domains in \mathcal{S} should generalize to unseen domains

• Domain adversarial learning

- Adversarial optimization where *d* discriminates the original domain of g(x), and *g* finds a representation which aids the classifier f(g(x)) while fooling the discriminator
- $\circ \qquad \operatorname*{argmin}_{f a} \operatorname*{argmax}_{d} \sum_{j=1}^{M} \sum_{(\mathbf{x}, y) \in \mathcal{S}_{j}} \mathcal{L}_{f,g}(f(g(\mathbf{x})), y) + \mathcal{L}_{d}(d(g(\mathbf{x}), j))$
- Explicit feature alignment
 - \circ Alignment of the domain distributions using a shared feature extractor g
 - $\circ \qquad \operatorname*{argmin}_{f,g} \sum_{i \neq j}^{M} \operatorname{dist} \left(g_{\#}(\mathcal{S}_{i}), g_{\#}(\mathcal{S}_{j}) \right) + \sum_{(\mathbf{x}, y) \in \mathcal{S}_{i}} \mathcal{L} \left(f(g(\mathbf{x})), y) \right),$ where $\operatorname{dist}(\cdot, \cdot)$ is some notion of a distance or statistical divergence metric
 - Common representation functions: kernel methods, batch-instance normalization, neural networks
- Invariant risk minimization
 - Find a data representation such that the optimal classifier $f^*(g(\mathbf{x}))$ is the same across all environments

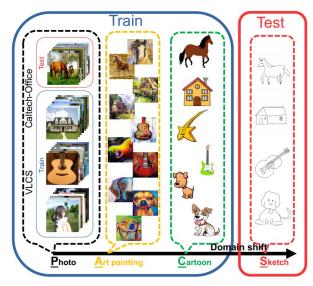
(A) Cow: 0.99, Pasture:0.99, Grass: 0.99, No Person:0.98, Mammal: 0.98

(B) No Person: 0.99, Water:
 0.98, Beach: 0.97, Outdoors:
 0.97, Seashore: 0.97

From: Recognition in Terra Incognita [10]

Feature-disentanglement learns both domain specific and domain-invariant representations

- Goal: learn function(s) that decompose samples into meaningful domain invariant $g_i(x)$ and domain specific features $g_s(x)$
 - $\circ \quad \operatorname{argmin}_{g_s,g_i,f} \mathbb{E}_{\boldsymbol{x},\boldsymbol{y}} \mathcal{L}(f(g_s(\boldsymbol{x})),\boldsymbol{y}) + \lambda \mathcal{L}_{recon}([g_s(\boldsymbol{x}),g_i(\boldsymbol{x})],\boldsymbol{x}) + \lambda \mathcal{L}_{reg}(g_s(\boldsymbol{x}),g_i(\boldsymbol{x}))$
- Multi-component analysis
 - During training, learn a universal model $\theta^{(0)}$ and domain-specific models $\{\theta^{(j)}\}_{j=1}^{M}$, and for inference use functional combination of the two
 - UndoBias: SVM where $w(x) = w^{(0)}(x) + w^{(j)}(x)$ where $j \in \{1, ..., M\}$ and is found via j = d(x), where *d* finds the domain which *x* is most likely to have come from
- Generative modeling
 - Use VAEs to find a latent space with disentangled representations of domain information, category information, and other information



From: Deeper. Broader and Artier Domain Generalization

References

[1] Koh, Pang Wei, et al. "Wilds: A benchmark of in-the-wild distribution shifts." International Conference on Machine Learning. PMLR, 2021.

[2] Chan, Stanley. "Chapter 4, Learning Theory." ECE 595 / Stat 598: Machine Learning, https://engineering.purdue.edu/ChanGroup/ECE595/files/chapter4.pdf.

[3] Rabanser, Stephan, Stephan Günnemann, and Zachary Lipton. "Failing loudly: An empirical study of methods for detecting dataset shift." Advances in Neural Information Processing Systems 32 (2019).

[4] Kulinski, Sean, Saurabh Bagchi, and David I. Inouye. "Feature shift detection: Localizing which features have shifted via conditional distribution tests." *Advances in Neural Information Processing Systems* 33 (2020): 19523-19533.

[5] Kulinski, Sean, and David I. Inouye. "Towards Explaining Distribution Shifts." arXiv preprint arXiv:2210.10275 (2022).

[6] Kulinski, Sean, and David I. Inouye. "Towards Explaining Image-Based Distribution Shifts." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2022.

[7] Choi, Yunjey, et al. "Stargan: Unified generative adversarial networks for multi-domain image-to-image translation." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2018.

[8] Wang, Jindong, et al. "Generalizing to Unseen Domains: A Survey on Domain Generalization." Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence Organization, 2021, pp. 4627–35.

[9] Beery, Sara, Grant Van Horn, and Pietro Perona. "Recognition in terra incognita." Proceedings of the European conference on computer vision (ECCV). 2018.

[10] Peyré, Gabriel, and Marco Cuturi. "Computational optimal transport: With applications to data science." *Foundations and Trends*® *in Machine Learning* 11.5-6 (2019): 355-607.

Thanks for listening :)

I'm happy to answer any questions you have now.

If you would prefer to chat after, just email me at: skulinski@purdue.edu , or

you may find answers/more ways to reach me on my website: seankulinski.com

